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Abstract

This paper presents a direct inethod for computing the time optimal trajectory for a robot
among stationary and mnoving obstacles, subject to robot’s dynamics and actuator constraints.
‘J 'he motion planning problem is first formulated as an optir nization problem, and then solved
numcrically using a gradient descent. The initial guess for the optimization is gencrated using a
method bad on the concept of Velocity Obstacles. Themethod isdemonstrated for a*2-1)0F
planar manipulator moving in static and dynamic envirommnents.

1. Inlroduction

Motion planning is central to the operation of autonomous robots. 1t concerns the gener-
ation of a trajectory fror i start to goal that satisfics the tasks object ives, such as minimizing
path distance or motion time, while avoid ing obstacles in the enviromnent and satisfy ing the
robot mechanics (kinematics and dynamics). We distinguish between planning and control in
that the former gencrates a nominal trajectory, whereas the latter tracks that trgjectory. Robot
motion planning is generally too ¢ornplex to be handled by on-line feedback controllers due to
the nonlincar state constrains introduced by the obstacles and the highly nonlinear and coupled
nature of rohot mech ariics.

Traditionally, motion planning has been treated as a kinematic probien, i.e. determining
the path that avoids obstacles without concern to robot speeds.  This was first extensively
addressed for articulated robots by transforming the problemn into the co nfiguration space, in
which the robot reduces 1o a point and the obstacles map into C-space obstacles [26,30]. The
focus in this body of work has centered on computational complexity and completeness (the
ability of the algorithm to find a path if one exists). More recently the kinematic problem was
extended to car-like robots, which are subject to non-holon omic kinematic constraints due to the
assumption of no slip between the wheels and ground. Here the focus has centered on obstacle
avoidance [28] and on minimizing path distance [27].

While solving a problem fundamental to robotics, kinematic motion planning ignores the
important effects of robot dynamics which become significant at all but the lowest speeds. For
example, non-holonomic motion planning of a car is useful for parking [32], which is usually



donc at very low speeds, but is all but incaningless for high speed emergency mancuvers [38].
Similarly, obstacle-free paths computed using: robot kinematics inay be dynamnically infeasible at
even moderate speeds, causing the robot 1o deviate fi oin the kinemeatic path due to its dynamics
and Jimited actuator efforts. This pave rise to dynamnic motion planning!, which produces a
trajectory in the state space rather than just a path in the configuration space. Planming in the
sate space, while comnputationally more extensive, allows one to minimize dynamic cost functions,
such as titnc or energy. These problems have been treated previously for both articulate] [35,36]
and mobile robots [37].

We distinguish between motion planming in static and in dynamic environments. In- static
cnvironments, the obstacles are static, and the robot is the only one that moves, whercas in
dynamic enviromments, both robot and obstacles move. Typical examples of dynamic environ-
ments include manufacturing tasks in which robot manipulators track and retrieve parts from
moving conveyers, and intelligent vehicles negotiating freeway traflic.

. Motion platming in dynamnic environments was originally addressed by adding the time
dimension to the robot’s corfiguration space, assurming bounded velocity and known trajectories
of the obstacles [9,19,33]. Reif and Sharir [33] solved the planar problein for a polygonal robot
among many moving polygonal obstacles, by scarching a visibility graphin the configuration-
time space. ¥rdmann and Lozano-1érez [9] discr etized the configuration-time space to result in a
sequence of configuration space slices at successive t hrne intervals. This method essentially solves
the static planming problem at every slice and joins adjacent solutions. Fujimura and Samet [19]
used a cell decomyosition to reprresent the configuration-ti me space , and joined cnpty cells to
connect start to goal.

Another approach to dynamic motion planning is to decompose the problem into smaller
problems: path planning and velocity planning.  This method first comnputes a feasible path
among the static obstacles, and represents it as a parametric curve in the arc length. Then,
the intersections of the moving obstacles with the path are represented as forbidden regions
in an arc length-time plane. The velocily along the path is chosen to avoid the forbidden
regions [15,16,18,20,25,29]. Kant and Zucker [25] selected both path and velocity profile using a
visibility graph approach. ] ,ec and ] ,ce [29] developed independently a siimilar apyroach for two
cooperating robots, and compal ed the effects of delay and velocity reduction oniotion time.
Iraichard [15] considered acceleration bounds, and used a scarch in a state-t)irrie space (s, §,1)
to compute the velocity profile yielding aminimun-time trajectory. Fraichard and 1 .augicr [1 6]
considered adjacent paths that could be rcachied from the nominal path when the nominal path
becomes blocked by a moving obstacle. Fujimura [18] considered the case of a robot moving on a
fixed time-dependent network, whose nodes could be temporarily occluded by moving obst acles.

A diflerent approach consists of generating the accessibility graph of the enviromnent, which
is an extension of the visibility graph [20,21]. Fujimura and Samet [20] defined it as the locus
of points onthe obstacles which are 1 cachable by the robot moving at inaximum speed. Thesc
points form the eollision front, and can be linked together to construct a path from start to goal.
The accessibility graph has the property that, if the robot moves faster than the obstacles, the
path computed by scarching the graph is thne-minimal. This concept was extended in [17] to
the case of slowly moving robots and transient obstacles, i.e. obstacles that could appcar and
disappear in the environment.

Nonce of the previous methods considered the non-lincar robot dynamics, arid none produced
time optimal motions. Time-optimal motions have obvious benefits in industrial applications by
reducing cycle tiimes and thus increasing the productivity of automated manufacturing systems.

! pthers use dynamic motion planning to denote motion planning in dynamdc envirouments [26], which is a subset
of ow definition.



Other application domains, such as intelligent vehicles and air traflic control, may benefit from
time-optimal motions by minimizing the recovery time from emergency situations and when
defining cmergency mancuvers.

The time-optimal motion planning problemn in static environments has been treated previ-
ously, beginming with the work by Kahn and Roth [24], who solved the problem for a lincarized
robot model, using the Pontryagin’s Minimum Principle (JM]’). The full robot model was used
in[31], assumiiyg banig-bang control and using a steepest decent over the switching tines, derived
to satisfy the necessary conditions of optimality stated by the PMP. However, the most efficient
mcthods to date scemn to consist of parameter optimizations over the trajectory [2,23,36] which
arc similar to the 1)ifleren tial Inclusions’introduced in [34], and the Inverse | dynamic Optimiza-
tionintroduced by 13ryson [4].

In this paper, we present a method for computing the time optimmal trajectories of a robot
moving in a dynamic environment. 1o make the problem computationally tractable, we restrict
the treatinent to the plane and assuine circular robot and obstacles. Wce also assume a full
knowledge of the environment.

entral to this approach is the computation of the initial guess for the optimization. This is
done by utjlizing the coneept of Velocity obstacle [10,1 1], which mnaps the dynamic environment
into the robot velocity space. The velocity obstacle is the first-order approximation of the robot’s
velocities that would cause a collision with an obstacle at some futw € time, within a given time
horizon. Feasible avoidance mancuvers are computed simply sclecting velocities outside the
velocity obstacle, and satisfying additional velocity cxnlst)-silks computed from robot dynamics
and actuator constraints. T'hein it ia guess of the optimal trajectory is computed by a global
scarch over a tree of feasible avoidarice mancuvers gencrated at discrete time intervals so as to
minimize time to the goal.

The optimal trajectory is computed using a stecpest descent algorithm over the admis-
sible controls [G- 8], modified to cousider time varying state inequality constraints. The state
inequality constraints due tothcinoving obstacles are considered by transforming themn into
state-dependent control constraints. Thie method was implemented for intelligent vehicles noe-
gotiating freeway traflic [38], and for a planar SCARA robot, considering its full nonlincar
dynamics and inoving circular obstacles [10]. Y.xamples of thelatter are presented in this paper.

The paper is organized as follows. Scction 2 forinulates the motion planming problem as a
minimum time problem and presents the numerical method for computing the optimal solution
satlisfying state inequality constraints and state-dependent control constraints. Then, Scction 3
addresses the problem of gencrating the nominal trajectory for the numerical optimization.
Finally, examples of optimal trgjectories of a SCARA robot avoiding fixed and mmoving obstacles
arc presented in Scetion 4.

2. The Dynamic Optimization

The dynamic motion planuing problein in the context of this paper consists of determining
the trajectory between two specified boundary conditions that avoids al] static and moving
obstacles and minimizes motion tirne. This is formulated as an optimization problem with timne-
varying state constraints, and is solved numnerically using the steepest descent method [8], as
discussed next.




2.1. Problem Formulation

T'he motion planning problem can be forinulated as follows: Find the control u* (¢) ¢ U in
o< < 7, which minimizes the cost function J:
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where 1 is free, subject to robot dynamics
x = . 7( X,11) = f(x) -1 g(x)u 2
adinissible controls
U- {“ | Uy, < UK umaa‘} (3)
initial conditions
x(to) = xo (4)
terminal manifold
Q(x(ty), 15)= 0 (5)

and state incquality constraints due to the moving obstacles:
T
U J[Six(@), 1> 0] (6)
i= 1

where S;(x(1), t) represents the tiine-varying boundaries of the moving  obstacles.

The original problem calls for a fixed final point. 1 lowever, we assuine instead a terminal
manifold (@ hyper-sphere around the final point) S0 that we can use influence functions to
compute the initial condition of the 1.agrange multipliers, and thus avoid using the more sensitive
shooting method [3].

State incquality constraints are generally diflicult. to satisfy although necessary conditions
for optimality nave been developed for such problems [22,39]. One way to consider state incqual-
ity constraints is to transform them into state-dependent control equality constrainits, active only
when the robot slides along the obstacle boundary [7,8).

To demonstrate the treatinent of the state inequality constrainits, we consider the single
obstacle:

v Sx(), 1) >0, S@) e ™ (")

where e is the dimension of the position space. Differentiating (7) with respect to time p
times until it becomes explicit in the control u, and assuming an aclive constraint, yiclds the
statc-dependent control constraint

S® (x,u): 0 (8)

where S® denotes the pth derivative of S, with p being the order of the constraint.

A solution satisfying (8) dots not necessarily satisfy (7), unless it passes through at least
one point satisfyin g (7) and all the derivatives or order less then p. We choose this point to be
the initial entry point of the constrained arc, at time 15 > to- The inequality constraint (7) is




thus replaced by the tangency point condition, ¥, and the state-dependent equality constraint,

Uy

(LT o (9)
SO D (x(tr),11) = 0
Uy SW(x(1),u(t),1): o 1 <t <1y (10

where 1yis the entry time, and 12 is the exit time of the constrained arc. This also modifics the
admissible controls (3) to:

U: { U: Wypiny ,< u .< Wyan: (] ])

SO (x(t),u(t),1) = 0 for ¢ (1,19

The addition of the tangency constraint, ‘1, thus transforms the original T'wo 1 °oint 1 3oundary
Value! I'roblem (1) into a Three Point Boundary Value Problem (for a single moving obstacle),
which is solved numerically using the method discussed next.

Note that this treatinent of the state inequality constraintsmay over-ccnlstraill the problem
since the trajectory is forced to satisfy the static constraint as an equality along a finite arc.
Conscequently, this approach cannmot find solutions that touch the state constraint at multiple
isolated proints [22]. This, however, has been shown to aflect only constraints of order higher
than two, and is hence not an issue for the circular obstacles treated here [22].

2.2. Numerical Computation

We apply the steepest descent method, whichrigorously satisfies a set of necessary optimal-
ity conditions. This method was originally developed in [6], modified to include state dependent
control inequality constraintsin [8], and modified to consider bang-bang controls in [31].

The steepest descent inethod iteratively computes the optimal controls by following the
negative gradient of the augmented cost function with respect to the conitrols and the final time.
The gradient is derived by adjoining the diflerential of the cost function with the differentials of
the terminal manifold and the tangency-point constraint, as discussed below.

2.2.1. The Diflerential of the Performance 1 ndex

Following the classic approach to constrained optimization [7], system dynainics and control
constraints are adjoined to the performance index J using two arrays of Lagrange functions
Ag(t) € R and p(t) € RF, where nis the dimension of the state space, and k is the munber of
active! state-dependent control constraints. This leads to the performance index J:

j = (/)(x(if)) -l /1:: [Xé, (]'(X, ll) - x) /17'([;()(, u)1d7 (12)

where )
- 0 t {(f]! 12
v { S0 1 ¢ (1, 1) %3

and yt is a vector of Kuhn-Tucker multipliers [7]
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By defining the Hamiltonian as:

H(Xg, x,0) = )"(Jj»LT(xa“) 4l p(x,u) (15)
and by choosing:
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This establishes the relations between variations in the independent variables, u and t5, and
variations in the cost function for the unconstrained problein.

2.2.2. The Differcential of the Terminal Constraint
The different ial of the terminal constraint §) is:
o0l o9
d)y, = - dx 4 - di 19
(d€2), \f)n:( * oLy 4, (19)
Following the derivation in Appendix A, and choosing multipliers Ag € R x R (where s
the yamber of terminal constraints) to satisfy:
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2.2.3. The Differential of the: 1 ’oint Constraint
Similarly, the differentia of the intermediate tangency constraints, ¥q, at time 14, is:

A\l AVl
(d¥y)y, = (( L da ( ](11,)
13}

O ol (23)

Yollowing the derivation nthe Appendix A, and choosing the Lagrange functions Ay € R x Rk

(where k is the number of constraints W)

. () N :I,
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the differential d¥ (23) reduces to:
{

1 L OF oV av
]\]I H AJ,;‘ (S 1 - "e .“' =; dl’ 2 )
(d¥y)y, o Yo uds - (()3:7 - ol >h 1 (26)




2.2.4. 1)iscontinuitly of the Lagrange Functions

The Lagrange functions Ag, and Ag arc integrated through the entry point of the constrained
arc at 11, where they are discontinuous. This discontinuity is computed as a function of the jump
in the acceleration (for a second order system) across the entry point to the constrained arc [5]
(sce also Appendix B):

©(1: (1) o§r- 1)
Ty L T _x(ty)- x(1f) a5
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2.2.5. The L)ifTferential of the Augmented Performance Index
The differential of the augmented performance index dJ counsists of the differentials (22)
and (26), appended to the differential dJ with the constant multipliers 77 and v:

% O AN 0
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Note that the mullipliers Ay are defined only between tg to 1y, since Vg is not affected by
the states after 1. Setting Ay (1) = 0 for 1> {3 we can define an augmented Lagrange function,

A:

AT = LN A TN (30)
which yields the Hamiltonian:
HU(A, x,u) = ATF(x, u) -l 1 p(x,u) (31)
and reduces (30) to:
. y s t;
dJ = (dd) 4 /7 ()Q -| ’}1.) diy - /l Hyduds + Hydudr (32
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This establishes the relations between variations in the independent variables, u and ¢y, and
variations in the cost function for the constrained problem, including the terminal manifold,
the tangency point, and the state-dependent control constraint. Assuming bang-bang control,
we SC these relations to compute the variations in the switching times that would zero the
differential of the augmented cost funiction.

2.2.6. The Bang-Bang Solution

It is easy toshow that the solution for minimum-time problems counsists of bang-bang con-
trols, for systems linear in the controls, excluding singular arcs [7] [40]. By assuming bang-bang
control we reduce the furict ional opt imization to a parameter oprtimization over the switching,
times. The number of switches is approximated from the initial guess, as discussed later, and
the singular arcs arc approximated by a finite number of switches [31].




For banp-bang controls, the variations édu; in (32) arc replaced with:

Sui = (o - o) sgn{diyy) (33)

where sgn is the signum function, and di;; is the change of the jth switching time for control
u;. Note that du; # 0 only at the switching times where % switches between the extremes.
Therefore du; is represented by
du; = (- 1Y Dardty (34)
where
Aa: ap - (35)

Using (34) we now discretize the augimented cost function dJ of (32) as a function of the
switching tinies:

m 81,4 VR
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el i 150 ]
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where sy represents the segment of the trajectory before the obstacle, sp represents the con-
strained arce, and obstacle, sz is the segment of the trajectory from the obstacle to the target,
and 1 is the dimension of u. Since the second term in (36) corresponds to the constrained arc,
the corrections dig; are computed only for the controls not determined from S) (x,u,1) = 0.
The objective now is to determine the variations di;; that would minimize the differential
dJ. This can be done by following the negative gradient of dJ defined by the coeflicients of the
dii; in (36). The step size of cach nove is determined by adding a quadratic term in dii; and

diy to (36) [31]:
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where b is a positive numnber, and wy; are the clements of a diagonal positive definite matrix.
The step size that minimizes (37) is given by:

(?(’Ui)lij 00

diy = - e (38)
()d) . 00
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The values of di;; and diy in equations (38) and (39) depend on the multipliers 7 and v,
which are computed by back-substituting (38) and (39) in (22) and (26), and by mulliplying



Figure 1: The fcasible avoidance velocitics RAV

d¥;(11) and dQ(tf) by - ¢, with € a small positive numnber. This scales the improvements in 7
and v to satisfy the first-order necessary conditions of optimality.

With this substitution, equations (22) and (26) yicld:
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where the terms Uy are defined as:

o S g~ oq-1
N e Y
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with b = V1, Q, k = ¥1, Q, ¢, 1 :1,2,3, representing before, on and after the state! constraint,
ands indicating theindependent controls.

This procedure reduces the differential defined in (32) 1o zero, which also satisfies the
necessary conditions of optimality st ated by the Pontryagin Minimum Principle, as discussed in

[L0]

3. The Initial Guess

The dynamic optimization discussed carlier converges only to a local mminimum, which
depends on the initial guess.  Since the dynamic motion planning problemn is gencrally not
convex, i.e. it has multiple local minima, sclecting the appropriate initial guess would determine
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Figure 2: Tree representation for the global scarch.

the quality of the solution. While it is generally desirable to compute the global minimal
trajectory, it is equally important to obtain a trajectory specified in terms of the sequence of
avoidance and the side from which each obstacle is being avoided. Sclecting aninitial guessin
dynamic environments is initself a dynamic motion planning problem, as discussed carlier in
the Introduction. Imposing a desired structure makes {he problem harder.

An eflicient method for solving both problems has been recently developed [13]. Tt gen-
crates trajectories that are both collision-frec and dynamically feasible. Below, we first bricfly
summmarize this approach, and then compute a bang-bang approximation for the controls.

3.1. Generating the Trajectory

The method for generating feasible trajectories in dynamic environments is based m the
concept of velocity obstacles, which IS a first-order approximation of the robot velocities that
would cause a collision with somc obstacle at some future time [1 0,1 2]. Collision is avoided
by sclecting velocities outside the union of the velocity obstacles clue to al] moving and static
obstacles.

To ensure that the selected mancuver is also dynamically feasible, we impose additional
velocity constraints due to robot dynarics and actuator constraints, as shownin Figure 1.
¥Figure 1 shows the velocity obstacle of I3, moving at somc velocity vy, with respeet to a point
robot, A. Also showr are the feasible velocities R AV, whiich for a planar robot are represented
by a parallelogram. The feasible avoidance velocities arc confined to the set defined by the
differenice between t he feasible avoid ance velocit ies and the velocity obstacle.

An avoidance mancuver consists of a velocity vector and atime interval over which that
velocity is applied. Manecuvers can be sclected to minimize a global cost function, such as motion
time, or to satisfy local objectives, such as passing an obstacle from the front rather than from
the rear.

A trajectory consists of a scquence of avoidance mancuvers. A trajectory that minimizes
motion time can be generated by scarching over a trec of feasible avold ance mancuvers, gencrated
al discrete time intervals. Figure 2 shows two branches of the tree, rooted in node n;  at time ¢
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Figure 3: Planar 2-clef Manipulator: @) top view, b) side view

and reaching nodes n;y 1. The feasible avoidance velocities at timeszandi -i 1 are represented
by RAV? and RAVH! . A trajectory gencrated by this scarch is a £00d initial guess for the
dynamic optimization, since it, is quasi optimal, and it has the desired topological properties
(i.c. sequence of avoidance and type of mancuvers). A drawback of this trajectory is that its
velocity profile is discon tinuous, and hence cannot be differentiated to compute the nominal
controls. This is resolved by first smoothing the trajectory using Hermite splines, as discussed
next.

3.2. Generating the Controls

‘J'o compute the controls, wefirst sinooth the trajectory, consisting of a sequence of avoidance
maneuvers, using a spline interpolation. First, the path is smoothed by joining the inid-points
of cvery consecutive path segments with a third order Hernite spline that matches the slopes of
the path segments [14]. The velocity profile along the resulting path is smoothed using a cycloid
between the mid-points Of consecutive velocity segments, given by:

wt - sin(wt)

ORI 42

where w = 2;10.”, and 7' is the motion time between the two mnid-points.

Using inverse dynamics, we now compute the controls associated with the smoothed tra-
jectory. The switching times arc approximated at the zero crossings of the control signals, with
a decad-band to avoid chatter.

1

4. Examples

Here we present examples for the two degree-of-freedomn planar manipulator shown in Fig-
urce 3. The problem is greatly simplified by assumning a planar SCAR manipulator, with the end
cffector moving among obstacles placed below the planc of thelinks. The dynamic inodel of this
manipulator IS given in the Appendix C.

4.1. Single Obstacle

The objective in the following examples is 1o move the end-cffector from rest at the starting
position X = (- .15m, .55 m), to rest at the goal position X = (1.5 m, - .5m), in minimum
time.
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First, the optimal path, computed with no obstacles, is shown in Figure 4. The actuator
{orques for this solution arc shown in Figure 5. For this case, the sccond joint has one switch,
whercas the first joint has two switches and a possible singular are (imultiple switches) near the
start point. This singular arc may be explained by the smaller angular rotation of the first joint
compared to the rotation of the joint. This solution closcly satisfics the necessary conditions of
optimality, and is similar to the solution computed by the parameter optimization presented in
[36). The optimal time for this case is 3.59 s.
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The sccond casc considers a static obstacle, yrepresented by a circle of radius r = .4 1,
centered at C = (.6 m, - 213). The constraimts V1 and W2 due to this obstacle are:

(x - .’I:O)? -1 (y- y(,)? - 2 = ()
\],] _ O 1 = t]

(- zo)vsl (U- Yoy ° )
Wy V2 (x- wo)a; u;‘; 4 (Y- yo)ay: O 13 <t <ty
The optimal path for this case is shown in Figure 6, and the actuator torques are shown in
Figure 7. Mere the path grazes the obstacle at one point, and (lots not follow the obstacle
because of its high curvature. 1he optimal time for this casc is 5.1 7 s.



Goal

Figure 7: Optimal controls with a fixed obstacle
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Figure 8: Optimal trajectory with a large static obstacle

the (;{)L-iz Gose was repeated wi{.}1 a llnrtrrr‘r] obstacle, ass] 1own in Figure 8, where the path follows
» obstacle o ~“the obstacle ) T (.8 m T
boundary. Here, is of radius 1 = .6 1, located at C = (:8mm, - .15 mm).
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Iinally, the third case considers a moving obstacle, as $hown in Figure 9. The constraints
¥y and ¥y are now:

(@ - Worl A4 26))? 4 (- (Wt yo))?- 77 = 0
vy o (- (voal | 20)) (Vs - Vaa) =1
Ay = oyl 1 Yo))(Vy - Vay) =0
. (va - Vo) 4 (2~ (Voud  T0))aat <1<t
! ((“y - 'on)? + (y- (“oyt | f‘/a))“'y = 0

The optimal path for this case, shown in Figure 9, slides along the moving obstacle. The
actuator torques for this case arc shown in Figure 10. The motion time for this case is 1= 4.36 s,
which is longer than the unconstrained time, but shorter than the time with a fixed obstacle.
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Figure 9: Optimal {rajectory with a moving obstacle
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Figure 1 (): Optimal controls with a moving obstacle
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4.2. Multiple obstacles

In this example, the optimal trajectory is computed for two moving obstacles, using the
SCARA manipulator as in the previous examples. The obstacles are moving at constant ve-
locities: obstacle Tat (.045, .045) m/s and obstacle 2 at (- .007, .03) /s, starting at time o
fromn the positions (.1, - .5) m and (1.15, .7) m,respectively. T'he end-eflector starts at rest from
(.3, ,2) 7, and ends at rest at (1.5,-.5) m.

The optimal trajectory is computed by first gencrating an initial guess using a global scarch
over atree of avoidance manicuvers. The avoidance 1mancuvers were generated using velocity
obstacles at 7' = 1 S intervals. The motion time for the initial guess was 4.81 < The bang-bang
controls computed for this trajectory are showiyinFigure 12. Optimizing from this initial guess
resulted inthe path shownin Figure 1 1, and the actuator torques shownin Figure 13. The
optimal motion time for this case is 2.6 s. The improvement in notion time of the optimal
trajectory compared to the initial guess is duc to the fact that avoiding the velocity obstacles
produces coniservative trajectories, 1 .e. trajectories consisting of velocity scgments that are
gnarantced to avoid both obstacles at all times [1 1]. Clearly, the dynamic optimization is not
subject to such a constraint, anid therefore produces shorter motion times.




Initial Guess

Optimal Solution

Figure 11: Optimal trajectory with two moving obstacles.
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Figure 12: Bang-bang controls for the nominal trajectory.
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Figure 13: Bang-bang controls for the solution.




5. summary

This Paper presented a method for computing the time-optimal trajectories of a manipu-
lator moving in dynamic environments, subject to system dynamics and actuator constraints.
Formulating the problem as a time-minim ization, the state inequality constraints clue to the
moving obstacles arc transformed to state-(I(:1)cl)(Icllt control constraints and atangency point,
constraint at the entry point of the constrained arc. Assuming bang-bang controls) this opti-
mization problem is solved nurncrically as a parameter optimization over the switching times
and final {time, using a steepest descent algorithin,  The initial guess for the optimization is
com puted using the previously developed concept of the Velocity Obsiacle [1 0]. The velocity ob-
stacles allow one to select aninitial guess that has a desirable structure, i.e. a desirable sequence
of avoidance and a desirable side from which cach obstacle should be avoided. The method is
demonstrated in several examples forr a 2 1)OF pla Dar manipulator moving amongst static and
moving circular obstacles.

The optimal trajectory in a free environmnent compares favorably with the solution computed
by another method [36], thus verifying the correctness of the proposed approach. Clearly, this
method is meant for off-line comnputations, and is thus applicable to repetitive tasks, such as
manipulators operating between moving conveyor belts, or manipulators operating off moving
platforms. A more cflicient method for on-line planming (with no guarantee of optimality) in
dynamic environments has been presented in [1 3].
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Appendix

A. Derivation of the Terminal Diflerential

The differential of the terminal constraint  can be computed using [6]:

Bl) o9
1), = (- ded -, dt 43
(@) = (a5 )tl )
Using dz = dx 4 adt it follows that
(dN)g, = (6, 4 Qu,diy (44)

The variation éz satisfies the first order perturbation equation:

oF oF

8 = ; -
: o . Ou

ou (45)

Thercfore, there exists a state transition matrix @(2,7) expressing the variation (62:),; (7). The
variation 682 is then:

o9} : ty oF
Ve, = - D(1s,10)02(1g) - Dy, 7)-= 1 46
(6824, 9 y < (ts,10)62:(t0) - i (f,’r)(,)u 511(7)(7) (46)

This expression can be simplified by defining a multiplier A € 8" x R as:

o a2 '
(1) - (‘ag)t (1),1) (47
' '

where 7 is the dimension of x and [ is the number of terminal constraints. Taking advantage

of the properties of the state transition matrix @ [7), a sct of adjoint cquations for Aq can be
writien as:

. oF\T (’)Sl)
N Bt Aalty) = |- ¢
Aa(t) = ((’)a:) Aaft) ally) ((‘):1: ) (49)
(48)
Therefore, using,
s, = [0 sudr 4 50 (50)
(682), = o You uar - 03l

in cquation (44), and assuming fixed initial conditions, the total differential of €2 becomes:

b OF o0, 00
10(ts) = Ay dudr A (= a0 ) di 51
d2(ty) /to 29u uds - (03;7 f m>t,( I (51)
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B. Effect of the Point Constraint on the! Multipliers

The ccj-state cquationsfor A,ui, A used in the previous Sections do not take into account
the cffects of the constraints ¥ jand Y2 given by:

T ()\}’

A= Mg du(ly)

(52)

"T'his discontinuity affecets the co-state cquations, as illustrated in the following using multiplicrs
Aa (8]

The unknown 7 is computed by rclating the value of Ag at 7, i.c. just before reaching the
constraint ¥y, 1o its value at ti‘ , 1.c. just after reaching Wy. To do this, Aa(t) ) and Aq(¢; ) are
first computed independently of cach other, using the expressions for dQ2 at 17 and 1.

The value of Ag(1]) is computed from the expression of the changes in dQ(17) due to the
variation of x, éx(1] ):

dQU(ts) = Mhéx(t]) = A (dx - xdiy) (53)
that can be rewritten as: 50 50
of} ¢
dQ(is) = |-, dx- -, di 54
t5) (é)xd"[ Y >t7 (54)
from which:
o) T,
e * M) (55)
o0l Pl N (g
OV ICPEIUD (56)

The value of d§2 at 17 is cornputed using:

dQ213 )

(69),: s’z,i dt; (57)

where:

. OF
(552)15 = (Aadx), I/ Af,(, duds

Since dSU D(x) = 0, the value of di; is:

_ 1 T 1
diy - ) [ (,\ o 1)0% /0 X e o 5udtJ (58)

By replacing diy in d€2 of equation (57) with (68), and since S 1) and Q are both independent
of the integration variable, dS2(1 ) becomnes:

L o o [h T Q oF o Q- 7 re
dS)(ty ) = (Antsx)to 4 /to (Asz <o 1)>\S(" 1)) Su dudr G- . (AS(”’ 1)5x)t0 (59)
1

The desired expression of A at 1], satisfying d(S g1 ) O is then:

» . Q
7 -y. [y 7
An)S(gr () = <)‘Q ol ) As(;.», 1)) (60)
N t;




This equation can be further simplified by replacing Q(t,] ) with:

o8

Q(ty) = o | X0 MG )x ()

4
Since the differentials dx(1;) and di; are the same at 1] and ¢7 , equation (55) gives:

o0

B Yt
(()X fl(il )

4
and similarly

as-1)

T - -
A‘g(p- ])(1'] ) b é‘)x ‘t
1

By using equations (62), (63), and (61)in (60), the discontinuity of A a, t; becomes:

)

which is equivalent to the necessary condition (52) if the multiplier 7 is equal to:

4 YL x(17) - x(tf) ast-
Aq.g- )= A0(ty) (1 - ]S 1R

U'ﬂij ) o Hx

SIVINCCRETD
797 - A{z(tll )< :9'(")(1& )] )
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Figure 14: Planar 2-dof Manipulator

Al

’. Kinematic and Dynamic Equations of a T'wo-Link Manipulator

Figure 14 shows the model of the two link manipulator used in the previous examples. The
sy1nbols us ed in the model are the following;:

o the shoulder of the arm,
¥ the elbow of the arin,

H the tip of the forearm,
Cicenter of mass of link one,
Ca center of mass of link two,
lylength of link one,

Iy length of link two,

lc, distance of Cy from O,
I, distance of C2 from A,
1 mass of link one,

o mass of link two,

0y angle between link one and the X axis,

0y angle between link two and link one,

12

. . . . . ki
1 principal central moment of inertia of cach link, I = »;ﬂ?‘




71,2 torques applied at joints 1 and 2.

The kinematic equations of 1,

. Direct kinemat ics:

hearmare [41]:

@) = 1y cos(0r) 4 lg cos(0y - 0y)
y = L Sill(()]) 419 Sin(Ol - ()?)

e Inverse kinematics:

"

01
02

k

-

with the condition

ar

ctan 2(yp, o) 1 arclan 2(k, z% 4 y? 4 12 - 13)

arctan 2(k, 25 -| 1/;1; - 12 12)

V@24 g2 4 2187 2((a2 4 g2 14 1)

(2- B)<(@249d) <@

In the symbols (3, 4 ), the top sign refers to the elbow up configuration of the arm, and
the bottom sign refers to the elbow down configuration.

. Diflerential kinematics:

J- = lysinfy ~ Iy Si)l((}] - 02) ) sin(01 - 02)
T lLicosOy A lpcos(Oh -l 03) 1y cos(0 - 0,)

|

The dynamic equations of {1

. State equati ons

. Dynamic equations

.’I,:]

.’1:'?

(I':.4

CO“-(O] - 02) ﬁm(ﬂj - 01)
si1 I()) 0
Iy cos 014 l? (m(01 -1 03) {1y sin 01—{ 11 9111(01 - 02) }
l]ly sin 01 - l)lg Qlll(];}

1c arm are [1]:

T )
wy = 0
xg = O
ag = Oy
= @
(11 - Hioaig 4 had -1 20 agaq)/Hy
=y

= (71“ ]]]2’72> }L'l )/1])2

(72)

(73)

A~ N TN N
<
o B

~N N
~ O
~ =

(78)
(79)
(80)
(81)



with:
M1 = wgl? -1 Lt 112, 4 201, cos09) - Iy
Hyy = mol? a1y
]]]2 = Lgl]lc2 CoSs ()Q -1 'I'I'Lylﬁ? -1 ]2
b= moly le,s inly

Fromthese cquations it follows that:

To = - - 2 -t - ah -l hay+ 2haomg)-- - .
2 (7 I ! Ty 2 g ”1”)11“11??~ 1z,
.’I:',] = (’/’Q - ]]19.’17.2 - h Ilig)/]];g?

The valucs of the parameters used in the examples are the following:
oIy 15111, 2 = 1.3111.
. mqp = 10.0 Kg, ™2 = 10.0 Kg.

e71 =-10. 0 Nm, 72 3.0 Nin.

o0
ey

o~~~ o~
LTSI
— e e S

(86)



